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a b s t r a c t

In recent years, some authors have incorporated the penalized likelihood estimation into
designing multivariate control charts under the premise that in practice typically only
a small set of variables actually contributes to changes in the process. The advantage
of the penalized likelihood estimation is that it produces sparse and more focused
estimates of the unknown population parameters which, when used in a control chart,
can improve the performance of the resulting control chart. Nevertheless, the existing
works focus on monitoring changes occurring only in the mean vector or only in the
covariancematrix. Stemming from the ideas of the generalized likelihood ratio test and the
multivariate exponentially weighted moving covariance, new control charts are proposed
for simultaneouslymonitoring themean vector and the covariancematrix of amultivariate
normal process. The performance of the proposed charts is assessed by both Monte-Carlo
simulations and a real example.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The statistical process control (SPC) has been a major tool in manufacturing for assignable cause detection and variation
reduction (Montgomery, 2005). In a multivariate process, unexpected changes in either the process mean vector or the
covariance structure among the variables can lead to an increase in process variability. Therefore, the joint monitoring of
both the mean vector and the covariance matrix of a multivariate process becomes very important in ensuring the overall
process quality.

Inmultivariate processmonitoring, one of themajor challenges comes from the high dimensionality. For a p-dimensional
process, there are p mean components and p(p + 1)/2 variance/covariance components that any number of these
components may go wrong. Therefore, the number of possible combinations of out-of-control (OC) scenarios is usually
high, which makes the conventional general-purpose multivariate control charts ineffective. Similar phenomenon has been
observed inmany contemporary high-dimensional statistical problems. Recent statistical literature haswitnessed a blossom
of research on proposing penalized methods to deal with high-dimensional data, under the premise that only a sparse set
of variables is relevant. See Hastie et al. (2009) and Bühlmann and Van de Geer (2011) for extensive discussion.

As pointed out byWang and Jiang (2009) and Li et al. (2013), when a change in amultivariate process occurs, it is typically
the case in practice that only a small set of the mean or variance/covariance components has changed. That is, a certain

∗ Corresponding author. Tel.: +86 10 6279 5143.
E-mail address: libo@sem.tsinghua.edu.cn (B. Li).

http://dx.doi.org/10.1016/j.csda.2014.04.017
0167-9473/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.csda.2014.04.017
http://www.elsevier.com/locate/csda
http://www.elsevier.com/locate/csda
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csda.2014.04.017&domain=pdf
mailto:libo@sem.tsinghua.edu.cn
http://dx.doi.org/10.1016/j.csda.2014.04.017


K. Wang et al. / Computational Statistics and Data Analysis 78 (2014) 206–217 207

Fig. 1. Illustration of the shape and the thickness distribution of a wafer (sectional view).

sparsity exists in the shifted mean vector or covariance matrix. As a motivating example, we consider the monitoring of
wafer quality in semiconductormanufacturing. Fig. 1 illustrates the shape and thickness distribution of a wafer. In industrial
practice, the geometric quality of awafer is characterized by indicators such as total thickness variation (TTV), total indicator
reading (TIR), site TIR (STIR), Bow and Warp. More detailed definitions of these quality variables can be found in Li et al.
(2013). Among these variables, TTV, TIR, and STIR are calculated from the thickness distribution, while Bow and Warp
are calculated from the convex, concave or uneven shape. The thickness and shape of a wafer are affected by different
engineering mechanisms. Therefore, the five quality variables could be classified into two groups. When the manufacturing
process changes, it may lead to shifts in one of the groups, thus leading to sparse mean or correlation shifts.

In the setting of Multivariate SPC, when the sparsity assumption about the process shift patterns is reasonable and
incorporated into the chart design, one can potentially improve the chart performance by adopting a more focused control
charting mechanism. For example, Wang and Jiang (2009) designed a Shewhart-type chart, the variable-selection-based
multivariate statistical process control (VS-MSPC) chart, for monitoring the mean vector. The VS-MSPC chart first employs
the forward-variable-selection method to select a small set of potentially shifted variables, then calculates a T 2-based
charting statistic to detect mean changes in the small set of variables. Jiang et al. (2012) incorporated the variable-selection
procedure with a MEWMA update equation and proposed the VS-MEWMA chart to further improve the chart performance
in detecting small mean shifts. Zou and Qiu (2009) proposed to use the Lasso algorithm, instead of the forward-variable-
selection procedure for variable selection.

As for monitoring the covariance matrix, Li et al. (2013) recently took advantage of the sparsity of the usual covariance
matrix, and proposed a penalized likelihood ratio (PLR) chart. The PLR chart calculates the penalized likelihood ratio of
a group of samples and signals an alarm when the likelihood ratio shifts to an abnormal value. The use of the penalized
likelihood ratio has the effect of shrinking some of the components in the covariance matrix to zero, thus reducing the
effective dimension of the parameters needed to bemonitored. In two independent works, Yeh et al. (2012) andMaboudou-
Tchao and Diawara (2013) applied the above idea for the covariance matrix monitoring to the case when only individual
observations are available. Yeh et al. (2012) modified the penalty function used by Li et al. (2013) and shrank the sample
precision matrix toward the in-control (IC) one, rather than to 0 as more commonly seen in the existing literature. This
modification is meaningful in the SPC context. Maboudou-Tchao and Diawara (2013) proposed an effective accumulative
method by penalizing the precision matrix per se in a slightly different EWMA propagation. Maboudou-Tchao and Agboto
(2013) also studied the monitoring of the covariance matrix when the number of observations is fewer than the number
of variables. The authors proposed to use the graphical Lasso algorithm to obtain a sparse estimate of the precision matrix,
then used the sparse estimate for shift detection.

Although proven efficient, the variable-selection based or penalized likelihood estimation based charts are designed for
detecting either just the mean shift or just changes in the covariance matrix. In this work, we are motivated to develop new
penalized likelihood estimation based control charts for simultaneously monitoring the mean vector and the covariance
matrix of a multivariate process using individual observations.

Some methods have been developed in the literature for the joint monitoring of the process mean and the variability.
Hawkins and Zamba (2005) derived the likelihood ratio test for a change in mean and/or variance for normally distributed
data, which formed the basis for a single chart thus developed. The advantages of this method include: (a) the chart does
not rely on parameter estimates derived from the Phase I observations since the errors in Phase I estimation may lead to
uncertain run length distribution of the chart; (b) the chart is in simple form since it uses only one instead of two charts to
monitor both the mean and the variance; and (c) the chart can start quickly given a very small number (typically three) of
Phase I observations. Therefore, the chart can be easily used tomonitor short-run processeswith no or limited historical data.
Chen et al. (2001) proposed to monitor the mean and the variance of a univariate process using a single EWMA chart. Two
EWMA statistics are first designed for standardized mean and transformed variance terms. Since the two EWMA statistics
are independent and follow the same standardized normal distribution, the author suggested to monitor the maximum of
these two statistics and the resulting control chart triggers an alarm when the maximum is larger than the control limit.
This chart is named the MaxEWMA chart. Li et al. (2010) proposed a self-starting chart for the simultaneous monitoring of
the process mean and the variance based on the likelihood-ratio statistic and the EWMA procedure. Nevertheless, all of the
afore-mentioned charts are designed for univariate processes.

Zhou et al. (2010) proposed to use the generalized likelihood ratio test (GLRT) to monitor patterned mean and variance
(non-constant time-varying) changes. In this chart, a likelihood ratio test statistic was derived based on the process mean,
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which is used for monitoring process mean shifts with unknown patterns. Another likelihood ratio test statistic was also
derived for detecting variance changes. Finally, these two likelihood ratio test statistics are put together to formanewvector,
which is thenmonitored to detect changes in both the mean and the variance. However, in this method, only changes in the
diagonal variance components can be detected. In addition, in the GLRT test, the shift pattern information in the alternative
hypothesis must be completely known.

In this work, we are motivated to develop a novel charting statistic for the joint monitoring of the process mean vector
and the covariance matrix of a multivariate process. It is assumed that only individual observations are available at each
sampling period. That is, the subgroup size is equal to one. The charting statistic first tries to estimate the process mean
vector and the covariance matrix using a penalized likelihood estimation method. The charting statistic is then derived
based on a likelihood ratio test. The sparse estimates obtained in this procedure are also helpful to process diagnosis. It
is worthwhile to note that in this paper, we modified the penalty for the covariance matrix to be the Frobenius norm of
the difference between the estimated covariance matrix and the in-control covariance matrix. While most earlier works
concentrated on the precision matrix partly for the sake of the ease of computation, we think the covariance matrix per
se is more relevant for industrial practice and gives more informative clues for diagnostics. On the computational side, we
modified the algorithm recently proposed by Bien and Tibshirani (2011) by using a shifted version of the soft-thresholding.

The rest of this paper is organized as follows. Section 2 first presents the likelihood ratio and the existing charts for the
joint monitoring of the mean vector and the covariance matrix. Two new control charts are then developed based on the
penalized likelihood estimates of the process mean vector and the covariance matrix. Adaptive versions of the proposed
charts are proposed to circumvent the need of tuning parameter selection. In Section 3, the performance of the proposed
charts are studied and compared with the existing charts. Some guidelines for designing the proposed charts are also
discussed. Finally, Section 4 concludes this work with suggestions for future research.

2. The proposed control charting mechanism

In this section, we first present the likelihood ratio for testing the simultaneous changes of process mean/variance/
correlation. We then derive two versions of the control chart based on the penalized likelihood estimate.

2.1. The log likelihood ratio and the existing charts

Let x represent a p-dimensional quality characteristic to be monitored and we assume that x follows a p-dimensional
normal distribution denoted as N(µ, 6), where µ and 6 are the mean and the covariance matrix of the distribution,
respectively. When the process is IC, we assume that µ = µ0 and 6 = 60. Here µ0 and 60 are the known IC mean
vector and covariance matrix. Therefore, to detect changes in either µ or 6, it is equivalent to testing the hypothesis that
H0 : µ = µ0, 6 = 60 v.s. H1 : µ ≠ µ0 or 6 ≠ 60.

If only an individual observation, xt, is available at any given sampling period t , it is impossible to calculate the sample
covariance matrix or test the above hypothesis. As an alternative, Huwang et al. (2007) first proposed to accumulate at each
time period t the term (xt − µ0)(xt − µ0)

T using an EWMA equation. The same idea was also proposed in Hawkins and
Maboudou-Tchao (2008). If the process mean, µ0 is known, the MEWMC chart proposed by Hawkins and Maboudou-Tchao
(2008) for detecting changes in a covariance matrix operators as follows, for t ≤ 1,

S0t = ω(xt − µ0)(xt − µ0)
T

+ (1 − ω)S0t−1
−2LRt = − ln |S0t | + tr(S0t ),

where S00 = Ip, a p-dimensional identity matrix, 0 < ω < 1 is a smoothing constant, and −2LRt is the log-likelihood ratio
up to some constant. Note that the observation xt is already standardized to have an identity covariance matrix in Hawkins
and Maboudou-Tchao (2008).

The above charting statistic −2LRt is derived from the GLR statistic for detecting changes in the covariance matrix. That
is, the MEWMC chart is designed under the assumption that the process mean vector does not shift. Since we are interested
in detecting changes in both the mean vector and the covariance matrix in this work, we modify the above procedure to
derive a GLR chart that can jointly monitor the mean vector and the covariance matrix:

µt = αxt + (1 − α)µt−1
S0t = ω(xt − µ0)(xt − µ0)

T
+ (1 − ω)S0t−1

Sµ
t = ω(xt − µt)(xt − µt)

T
+ (1 − ω)Sµ

t−1
−2LRt = − ln |S

µ

t | + tr(6−1
0 S0t ).

(1)

Here µ0 = 0, S00 = Ip and 0 < α,ω < 1 are both smoothing parameters. Note that, as shown in Huwang et al. (2007),
the accumulated S0t is also sensitive to mean shifts, while the accumulated Sµ

t is not affected by the mean shifts. Huwang
et al. (2007) used S0t and Sµ

t to develop the MEWMS and the MEWMV charts, respectively, for monitoring the changes in the
covariancematrix. It is interesting to point out that when p = 1, the S0t and Sµ

t reduce to, respectively, the EWMS and EWMV
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statistics studied by MacGregor and Harris (1993). We name this chart the GLR chart whose performance will be compared
to that of our proposed charts in Section 3.

Although theMEWMC chart proposed byHawkins andMaboudou-Tchao (2008) is designed only for detecting changes in
the covariance matrix, the authors also suggested combining the conventional MEWMA chart, together with the MEWMC
chart, for the joint monitoring of changes in the mean vector and the covariance matrix. Hawkins and Maboudou-Tchao
(2008) called this combined scheme the MEWMAC chart whose performance will also be compared to that of our proposed
charts in Section 3.

2.2. The proposed control charts

Both of the afore-mentioned GLR chart and MEWMC chart are derived from the likelihood ratio test statistic for testing
the hypothesis that H0 : µ = µ0, 6 = 60 v.s. H1 : µ ≠ µ0 or 6 ≠ 60. That is, when the process changes, the mean
vector or the covariance matrix may shift to any direction. Therefore, the maximum likelihood estimators (MLE) for the
mean vector and the covariance matrix are used. However, in a multivariate process, as Wang and Jiang (2009) and Li et al.
(2013) pointed out, it is more common that the shift occurs among a subset of the variables. That is, when a mean vector
or a covariance matrix of a multivariate process changes, some of the elements in the mean vector or the covariance matrix
remain unchanged. Taking this information into consideration, we modify the GLR chart and derive a penalized version of
the charting statistic.

Compared to the MLE, the benefits of using sparse estimates of the mean vector and the covariance matrix are two-fold.
Firstly, a reduction of the degrees of freedom is attained, which is expected to lead to an improvement in the detecting
power. For a p-dimensional process, the usual likelihood estimator would need to estimate p elements for the mean vector,
and p(1+p)/2 elements for the covariancematrix. However, sparse estimates for themean vector and the covariancematrix
contain zeros, which reduce the degrees of freedom. The sparse estimation rules out some or many candidate parameters
under monitoring and makes the resulting charting statistic concentrate more on those parameters which are more likely
to incur changes. Secondly, the penalized chart is helpful to root cause diagnosis. If the chart triggers an alarm, the non-zero
elements in the sparse estimates are more likely to cause the alarm. Such information would guide the practitioners with
a more focused search for the root causes in the process. In the following, we propose two penalized charts, both of which
are derived from the sparse estimates of the unknown mean vector and covariance matrix.

The first proposed chart originates from the GLR statistic in Eq. (1). The usual GLR testing statistic uses no information of
the alternative hypothesis. However, based on the discussion about the sparsity of potential shifts and utilizing the penalized
likelihood estimationmethod, wemodify the GLR chart as follows. For t ≥ 1, the observations are first accumulated using an
EWMA equation. A sparse estimate of the mean vector is then derived. To obtain a sparse estimate of the covariance matrix
using individual observations, we also need to accumulate the samples in certain ways. Here we obtain two versions, one
using the constant ICmean vector and the other using the sparsemean vector estimate, to obtain the sample covariance. The
corresponding sparse estimates are then calculated. Finally, the likelihood ratio test statistic using the sparse mean vector
and covariance matrix estimates is calculated as the charting statistic. The detailed steps are outlined as follows. For t ≥ 1,

1. Obtain the MEWMA estimate of the mean vector,

µt = αxt + (1 − α)µt−1, (2)

where 0 < α < 1 is a smoothing constant.
2. Solve for µ̂λt , which is a penalized and sparse estimate of the process mean vector, by minimizing

µ̂λt = argmin
µ


(µt − µ)T6−1

0 (µt − µ) + λ1

p
i=1

|µi|


, (3)

where λ1 is a penalty coefficient, and µi is the ith element of vector µ.
3. Obtain the MEWMC for estimating the covariance matrix by incorporating µ̂λt ,

Sλ
t = ω(xt − µ̂λt)(xt − µ̂λt)

T
+ (1 − ω)Sλ

t−1, (4)

where 0 < ω < 1 is a smoothing constant.
4. Solve for Ŝλ

t to obtain a sparse estimate of the covariance matrix by minimizing

Ŝλ
t = argmin

S


− ln |S| − tr(S−1Sλ

t ) + λ2∥S − 60∥1

, (5)

where λ2 is a penalty coefficient and ∥A − B∥1 is the L1-norm of the difference between two matrices A and B, which is
equal to the sum of the absolute values of all element-wise differences of the two matrices.

5. Obtain the MEWMC for estimating the covariance matrix using µ0,

S0t = ω(xt − µ0)(xt − µ0)
T

+ (1 − ω)S0t−1.
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6. Calculate the following charting statistic using the above penalized estimates

PGLRt = − ln |Ŝλ
t | − tr(Sλ

t (Ŝ
λ
t )

−1) + tr(6−1
0 S0t ). (6)

We will call the control chart which uses PGLRt as the charting statistic the pGLR-chart (the penalized GLR-chart), and it
triggers an alarm if PGLRt > h, where h is a predetermined control limit.

The first two terms in Eq. (6) correspond to the log-likelihood function under the alternative hypothesis and the last term
corresponds to the log-likelihood function under the null hypothesis subject to a constant. Note that the penalty coefficients
λ1 and λ2 affect the sparsity of µ̂λt and Ŝλ

t . The penalized estimates are more sparse and hence are expected to improve the
chart performance. Similar to the GLR chart, the pGLR chart is capable of detecting changes in both the mean vector and the
covariance matrix.

It isworth noting that in step 4 (Eq. (5)), a sparse estimate of the covariancematrix is obtained by penalizing the difference
between an estimate S and the IC covariance matrix 60. This treatment is quite different from that used by Yeh et al. (2012)
and Li et al. (2013). Li et al. (2013) penalized ∥S−1

∥1, which has the effect of forcing all the elements of S−1 to shrink toward
zero, including the diagonal variance components. Yeh et al. (2012) penalized ∥S−1

− 6−1
0 ∥1, which has the effect of forcing

all the elements of S−1 to move toward those of 6−1
0 . The target of both works is the precision matrix. Yeh et al. (2012) and

Li et al. (2013) mentioned that zeros in the precision matrix indicate conditional independence of the original variables,
which have certain engineering implications in practice. Bien and Tibshirani (2011) provided an algorithm for estimating
the covariance matrix when ∥S∥1 is penalized. In this work, we modify the algorithm due to Bien and Tibshirani (2011) so
that the penalty ismeaningful in the SPC context. That is, the difference between the estimated and the IC covariancematrix,
∥S − 60∥1, is penalized directly, which could give better diagnostic information if an alarm is triggered.

The second proposed chart is motivated by the MEWMAC scheme used in Hawkins and Maboudou-Tchao (2008). The
MEWMAC scheme consists of two separate charts, the MEWMA and the MEWMC charts. The MEWMA chart is expected to
detect mean shifts, and the MEWMC chart for covariance changes. Based on the assumption of sparse changes in both the
mean vector and the covariance matrix, we re-design the MEWMAC scheme, using the sparse estimates of the mean vector
and the covariance matrix in the control chart. More specifically, we first obtain a sparse estimate of the process mean
vector, µ̂λt , using the same steps 1 and 2 in constructing the pGLR chart. Then, instead of accumulating the observations for
estimating6 by accounting for possiblemean shifts as in step 3 of the pGLR-chart, we simply use S0t to find a sparse estimate
of 6, since when calculating S0t , the process mean vector is assumed to be IC and thus µ0 is used in the update equation.
Finally, the penalized MEWMA chart assumes that the covariance matrix is IC, and employs the T 2 statistic for detecting
mean changes, while the penalized MEWMC chart monitors the likelihood ratio for detecting changes in the covariance
matrix which assumes that the mean vector is IC.

The procedures for the second proposed chart are listed as follows. For t ≥ 1,

1. Obtain the MEWMA for estimating the mean vector,

µt = αxt + (1 − α)µt−1,

where 0 < α < 1 is a smoothing constant.
2. Solve for µλt by minimizing

µ̂λt = argmin
µ


(µt − µ)T6−1

0 (µt − µ) + λ1

p
i=1

|µi|


,

where λ1 is a penalty coefficient.
3. Obtain the MEWMC for estimating the covariance matrix using µ0,

S0t = ω(xt − µ0)(xt − µ0)
T

+ (1 − ω)S0t−1,

where 0 < ω < 1 is a smoothing constant.
4. Solve for Ŝ0λt by minimizing the following penalized likelihood ratio

Ŝ0λt = argmin
S


− ln |S| − tr(S−1S0t ) + λ2∥S − 60∥1


,

where λ2 is a penalty coefficient.
5. Finally, calculate the following charting statistics:

T 2
1 = (µ̂λt − µ0)

T6−1
0 (µ̂λt − µ0)

and

T 2
2 = − ln |Ŝ0λt | − tr(S0t (Ŝ

0
λt)

−1) + tr(6−1
0 S0t ).
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The proposed chart monitors the two charting statistics T 2
1 and T 2

2 and it triggers an alarm if T 2
1 > h1 or T 2

2 > h2, where h1

and h2 are predetermined control limits. Since the above T 2
1 and T 2

2 are essentially the penalized versions of the MEWMA
and MEWMC charts, we name it the penalized MEWMAC (pMEWMAC) chart. By combining these two separate charts, we
expect that the proposed pMEWMAC chart can help remove noises in the observations and thus will result in better chart
performance.

2.3. The adaptive charting scheme

To implement the charts proposed above, we will need to choose two penalizing tuning parameters λ1, λ2. The choice
of the tuning parameters is a delicate issue. In practice, the performance of the control charts varies when the tuning
parameters are differently chosen. Li et al. (2013) used fixed penalty parameters in their chart, but studied the effect
of different choices in monitoring process variability. Zou and Qiu (2009) utilized an adaptive procedure and suggested
selecting the tuning parameter from the Lasso solution path. To address this issue, here we follow Zou and Qiu (2009)
to adopt an adaptive tuning parameter selection scheme. The adaptive strategy searches a set of tuning parameter
combinations and picks the most suitable one automatically adapting to the potential out-of-control pattern.

Specifically, let Tλ, λ = (λ1, λ2) be any one of the above charting statistics with tuning parameter vector λ. Note
that Tλ represents a generic charting statistic, it could be the pGLR statistic in the pGLR method, or either the T 2

1 or T 2
2 in

the pMEWMAC method. We only manifest its dependence on the tuning parameters λ1, λ2. Denote q as the size of the
candidate set for the tuning parameter combination λ = (λ1, λ2). The newly defined adaptive version of the charting
statistic is

T (a)
= max

j∈{1,...,q}

Tλ(j) − E(Tλ(j))
Var(Tλ(j))

(7)

where λ(j)
= (λ

(j)
1 , λ

(j)
2 ), j ∈ {1, . . . , q} are a candidate set of the smoothing parameter combination over which the

maximum of the charting statistic is calculated, λ(j)
1 and λ

(j)
2 are chosen from a list of pre-specified values, and E(Tλ(j)) and

Var(Tλ(j)) are the mean and variance of the charting statistic Tλ(j) , respectively. In practice, these quantities are estimated by
simulations.

The idea of searching a range of charting statistics using different tuning parameters was originated in Horowitz
and Spokoiny (2001). In essence, the adaptive method uses different ‘‘optimal’’ tuning parameters in different scenarios
automatically. The theory developed by Horowitz and Spokoiny (2001), in an analogous setting, shows that the adaptive
scheme judiciously uses advisable tuning parameters in the sense that the failure pattern can be detected in a timelymanner
by using the implicitly selected tuning parameters.

Generally speaking, there are no detailed guidelines in the literature on how to choose the candidate set. Ideally, we
want the candidate set of tuning parameters of λ1 and λ2 to contain the ‘‘oracle’’ pairs such that the resulting penalized
solution leads us to the true out-of-control signal. Therefore, in practice, without considering computational burden, we
would choose a dense grid over a wide range blindly. By doing that, it is highly likely that the resulting procedures will be
adaptive to the true failure pattern. In our numerical studies, we simply chose 9 grid points partly motivated by preliminary
simulations for the sake of saving computation time.

3. Performance study and chart design guidelines

In this section, we study the performance of the proposed pGLR and pMEWMAC charts and compare it with that of the
existing charts. The chart performance is based on the average run length (ARL), where the run length is defined as the
number of observations taken before the first OC signal shows up on a control chart. Since the key idea here is the use of the
sparse estimates in constructing the proposed charts, we first demonstrate the performance of the sparse estimators.

3.1. Performance of the lasso penalty

Without loss of generality, we assume that when the process is IC, each observation follows a normal distribution,
xt ∼ N(0, Ip), where p = 5 is the dimension of the process. We sequentially generate 50 random observations from the
IC distribution, then use Eqs. (2)–(5) to accumulate the observations and obtain the sparse estimates defined in Eqs. (3)
and (5). The smoothing parameters are set to α = ω = 0.2. Note that the desired sparsity resulted from the penalized
estimation hinges on proper selection of the tuning parameters. To better demonstrate the sparsity-hunting effect of the
lasso estimation, we arbitrarily use a fixed combination of λ1 = 0.2 and λ2 = 0.5 for illustration. The adaptive choice of the
tuning parameters will be implemented when investigating the ARL performance of the charts in the next section.

Based on the EWMA accumulation defined in Eq. (2), we obtain

µt = (−0.272, −0.111, 0.023, −0.480, 0.275)T .
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After applying the penalty in the estimation, a sparse estimate is obtained as follows:

µ̂λ1t = (−0.222, −0.061, 0, −0.430, 0.225)T ,

which has the third element being set to exactly zero.
The MEWMC when incorporating µ̂λ1t from Eq. (4) is:

Sλ1
t =


1.165 −0.123 −0.145 0.128 −0.122

−0.123 0.237 −0.042 0.058 −0.046
−0.145 −0.042 0.414 −0.028 −0.109
0.128 0.058 −0.028 0.203 −0.148

−0.122 −0.046 −0.109 −0.148 0.478

 .

After applying the penalty, a sparse estimate is obtained as follows:

Ŝλ2
t =


1.000 −0.020 0 0.039 0

−0.020 0.256 0 0.041 0
0 0 0.561 0 0

0.039 0.041 0 0.190 −0.119
0 0 0 −0.119 0.575

 ,

where a number of elements were being shrunk to exactly zero. The sparse estimate is also closer to the true IC covariance
matrix Ip.

Now assume that the process is shifted to an OC distribution having

µOC = (0.5, 0.5, 0.5, 0, 0)T

and

6OC =


1.5 0.5 0.5 0 0
0.5 1.5 0.5 0 0
0.5 0.5 1.5 0 0
0 0 0 1 0
0 0 0 0 1

 .

By generating 50 random observations and treating them using Eqs. (2)–(5), the ordinary and penalized estimates of the
mean vector and the covariance matrix are

µt = (−0.143, 0.637, 0.252, −0.111, 0.023)T

µ̂λ1t = (−0.093, 0.587, 0.202, −0.061, 0)T ,

and

Sλ1
t =


0.708 0.233 0.498 0.073 0.093
0.233 0.862 −0.246 0.098 0.220
0.498 −0.246 0.907 −0.062 0.024
0.073 0.098 −0.062 0.237 −0.042
0.093 0.220 0.024 −0.042 0.414

 ,

Ŝλ2
t =


0.686 0.197 0.508 0.049 0
0.197 1.000 −0.171 0 0
0.508 −0.171 0.932 −0.011 0
0.049 0 −0.011 0.256 0

0 0 0 0 0.564

 ,

respectively. It is found that both the sparse mean vector and covariance matrix estimates preserve a certain number of
zeros corresponding to the set of unchanged mean and variance/covariance components. By incorporating the sparse and
more targeted estimates of the unknown population parameters into designing the proposed charts, it is expected that the
performance of the proposed charts will be improved.

3.2. The ARL performance study and comparison

In this section, we study and compare the ARL performance of the two penalized charts, the pGLR and the pMEWMAC
charts, with that of their counterparts, the GLR and the MEWMAC charts. For illustrative purpose, the IC parameters of the
process are set toµ0 = 0p, and60 = Ip, with p = 10. It should be noted that the proposed charts can be applied to processes
with any general IC mean vector and covariance matrix. A real example with such a general setting will be demonstrated
later in Section 3.4.
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Table 1
Out-of-control shift patterns for performance comparison.

Pattern number Shifted elements

OC1 µ1
OC2 µ1, µ2, µ3
OC3 µ1, . . . , µ5
OC4 σ11, σ22
OC5 σ11, . . . , σ13, σ21, . . . , σ23, σ31, . . . , σ33
OC6 σ11, . . . , σ15, σ21, . . . , σ25, . . . , σ51, . . . , σ55
OC7 OC1 and OC4 together
OC8 OC2 and OC5 together
OC9 OC3 and OC6 together

Table 2
The OC ARL performance of the GLR chart.

δ Shift patterns
1 2 3 4 5 6 7 8 9

0.2 180.6 153.0 127.8 156.1 112.8 70.0 140.3 87.1 48.4
0.4 141.1 74.0 44.0 108.1 55.2 24.9 80.1 27.6 11.9
0.6 91.5 29.8 12.9 74.6 29.7 12.2 42.0 10.6 4.3
0.8 57.1 11.6 3.9 52.2 18.4 7.3 22.5 4.8 2.0
1.0 34.1 4.4 1.5 36.5 12.3 4.9 12.8 2.6 1.3
1.2 19.1 2.0 1.0 26.8 9.0 3.5 7.4 1.6 1.1
1.4 11.1 1.2 1.0 20.2 6.7 2.7 4.6 1.2 1.0
1.6 6.5 1.0 1.0 15.8 5.1 2.2 3.1 1.1 1.0
1.8 3.8 1.0 1.0 12.5 4.1 1.8 2.1 1.0 1.0
2.0 2.3 1.0 1.0 10.1 3.5 1.6 1.6 1.0 1.0
2.2 1.5 1.0 1.0 8.2 2.9 1.4 1.3 1.0 1.0
2.4 1.2 1.0 1.0 7.0 2.5 1.3 1.2 1.0 1.0
2.6 1.1 1.0 1.0 5.9 2.2 1.2 1.1 1.0 1.0
2.8 1.0 1.0 1.0 5.1 2.0 1.2 1.0 1.0 1.0
3.0 1.0 1.0 1.0 4.3 1.8 1.1 1.0 1.0 1.0

For a fair comparison, the IC ARL of all charts is set to 200. As both MEWMAC and pMEWMAC contain two separate
charts, the IC ARL of each individual chart is approximately 380, such that the overall IC ARL of the combined charts is still
200. The smoothing parameters of the charts are set to α = ω = 0.2. As only individual observations are available at
each step and the EWMA smoothing is used for mean vector and covariance matrix estimation, we use 50 IC observations
for warm up and study the steady-state ARL of all charts. As was indicated in Eq. (7), the tuning parameters, λ1 and λ2,
will be adaptively chosen to maximize the charting statistic. We here set λ1 = {0.05, 0.1, 0.3} and λ2 = {0.1, 0.2, 0.4}.
The possible combinations of (λ1, λ2) include (0.05, 0.1), (0.05, 0.2), (0.05, 0.4), (0.2, 0.1), . . . , (0.3, 0.4). Thus, in total,
q = 9 combinations are utilized in Eq. (7) to search for the maximum.

Nine different OC scenarios, defined in Table 1, are tested against each chart. When a shift occurs, each shifted element
in the mean vector or/and the covariance matrix is increased by an amount of δ. Among the OC patterns, OC1–OC3 are for
mean shifts, OC4–OC6 are for covariance matrix changes, and OC7–OC9 are for changes in both. We tried a sequence of δ
values: 0.2, 0.4, 0.6, . . . , 2.6, 2.8, 3 to examine the performance pattern of the various charts under comparison.

The simulated OC ARLs of the GLR, pGLR, MEWMAC and pMEWMAC charts are summarized in Tables 2–5, respectively.
Based on the results shown in Tables 2–5, a number of observations can be made.

1. A comparison between the GLR and the pGLR charts shows that the pGLR-chart consistently outperforms the GLR-chart
for all the scenarios we considered (OC1–OC9). This shows that the added penalty term is effective and enhances the
performance of the proposed pGLR-chart. The improved performance of the pGLR-chart for detecting the joint shifts
makes it more attractive as a control charting mechanism for simultaneously monitoring the mean vector and the
covariance matrix of a multivariate normal process.

2. Between the MEWMAC and pMEWMAC charts, the pMEWMAC-chart performs slightly better than the MEWMAC chart
for most of the mean shifts (OC1–OC3), but is slightly worse for variance changes (OC4–OC6). Under the joint shifts
of OC7–OC9, the two charts perform quite closely. This shows that penalized version of the MEWMAC chart does not
improve the performance significantly. One possible explanation is that the MEWMAC chart already efficiently used
information in the observations; the gain added by using a penalized method in identifying shift signals is limited in the
pMEWMAC chart.

3. A comparison between the pGLR and the pMEWMAC charts indicates that the former is more effective in detecting
variance changes in OC4 and OC5, while the later is more powerful in detecting mean and joint shifts.

In summary, applying a penalty to the GLR chart significantly improves its charting performance, while adding a penalty
to the MEWMAC chart does not improve its performance significantly. Between the GLR and the pGLR charts, the latter
is recommended due to its improved performance. Between the MEWMAC and the pMEWMAC charts, the former is
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Table 3
The OC ARL performance of the pGLR chart.

δ Shift patterns
1 2 3 4 5 6 7 8 9

0.2 184.5 142.7 108.1 153.2 108.3 63.1 140.6 77.5 39.2
0.4 122.7 55.1 26.8 100.3 47.8 19.0 73.3 18.7 7.6
0.6 83.4 18.7 6.4 66.3 25.0 9.5 32.9 6.8 2.6
0.8 39.0 5.7 1.9 43.5 15.4 5.4 16.3 3.2 1.5
1.0 23.9 2.3 1.1 27.5 8.8 3.7 8.2 1.7 1.2
1.2 12.9 1.2 1.0 22.1 6.6 2.4 4.8 1.2 1.0
1.4 6.6 1.0 1.0 15.8 4.5 2.0 3.0 1.1 1.0
1.6 3.8 1.0 1.0 12.7 3.6 1.8 2.1 1.0 1.0
1.8 1.9 1.0 1.0 9.7 3.1 1.5 1.4 1.0 1.0
2.0 1.6 1.0 1.0 7.2 2.5 1.4 1.3 1.0 1.0
2.2 1.1 1.0 1.0 6.4 2.1 1.2 1.1 1.0 1.0
2.4 1.0 1.0 1.0 5.0 2.2 1.2 1.1 1.0 1.0
2.6 1.0 1.0 1.0 4.1 1.8 1.1 1.0 1.0 1.0
2.8 1.0 1.0 1.0 3.5 1.6 1.1 1.0 1.0 1.0
3.0 1.0 1.0 1.0 3.1 1.5 1.0 1.0 1.0 1.0

Table 4
The OC ARL performance of the MEWMAC chart.

δ Shift patterns
1 2 3 4 5 6 7 8 9

0.2 169.6 126.2 95.3 144.3 108.3 66.0 123.4 67.2 36.9
0.4 109.8 41.5 19.6 100.0 53.2 24.3 58.5 17.9 8.3
0.6 55.6 11.7 4.0 67.9 29.4 12.4 26.9 6.8 3.1
0.8 27.2 3.6 1.3 47.7 17.9 7.4 13.4 3.2 1.7
1.0 13.4 1.5 1.0 34.2 12.2 4.8 7.4 1.8 1.2
1.2 6.8 1.1 1.0 25.6 8.6 3.5 4.4 1.3 1.1
1.4 3.4 1.0 1.0 19.5 6.8 2.7 2.8 1.1 1.0
1.6 1.9 1.0 1.0 15.4 5.3 2.2 1.9 1.0 1.0
1.8 1.3 1.0 1.0 12.3 4.2 1.9 1.5 1.0 1.0
2.0 1.1 1.0 1.0 9.8 3.5 1.6 1.2 1.0 1.0
2.2 1.0 1.0 1.0 8.1 3.0 1.5 1.1 1.0 1.0
2.4 1.0 1.0 1.0 6.8 2.6 1.3 1.1 1.0 1.0
2.6 1.0 1.0 1.0 5.8 2.2 1.2 1.0 1.0 1.0
2.8 1.0 1.0 1.0 5.0 2.0 1.2 1.0 1.0 1.0
3.0 1.0 1.0 1.0 4.4 1.8 1.1 1.0 1.0 1.0

Table 5
The OC ARL performance of the pMEWMAC chart.

δ Shift patterns
1 2 3 4 5 6 7 8 9

0.2 160.9 123.9 91.3 150.3 124.2 74.8 124.1 64.6 39.5
0.4 104.9 37.9 21.7 108.7 56.6 27.0 52.6 18.8 8.5
0.6 48.1 11.7 5.1 69.3 30.0 14.4 22.2 6.6 3.4
0.8 22.9 3.5 1.4 48.8 19.6 8.6 11.9 3.2 1.8
1.0 11.1 1.5 1.0 34.5 13.6 5.6 6.1 1.9 1.2
1.2 4.6 1.1 1.0 26.8 9.6 3.7 4.0 1.4 1.1
1.4 2.5 1.0 1.0 20.4 6.9 3.0 2.3 1.1 1.0
1.6 1.5 1.0 1.0 14.2 5.7 2.3 1.7 1.0 1.0
1.8 1.1 1.0 1.0 11.9 4.3 2.0 1.3 1.0 1.0
2.0 1.0 1.0 1.0 10.6 4.1 1.6 1.2 1.0 1.0
2.2 1.0 1.0 1.0 8.2 3.2 1.4 1.1 1.0 1.0
2.4 1.0 1.0 1.0 6.3 2.8 1.4 1.0 1.0 1.0
2.6 1.0 1.0 1.0 5.5 2.5 1.2 1.0 1.0 1.0
2.8 1.0 1.0 1.0 5.4 2.1 1.2 1.0 1.0 1.0
3.0 1.0 1.0 1.0 4.5 2.0 1.2 1.0 1.0 1.0

recommended since it has a relatively simpler form with competitive performance. A selection between the pGLR and the
MEWMAC charts is subjective. TheMEWMAC chart has better overall performance, while the pGLR chart is simpler in that it
contains a single chart but theMEWMAC chart contains two separate charts. In addition, the pGLR chart has the capability of
suggesting diagnostic information when a shift is detected, which is attractive to practitioners in identifying and removing
root causes in practice. Therefore, no chart is uniformly better than all others. This work has proposed a new alternative for
the joint monitoring of process mean vector and covariance matrix. From a practitioner’s perspective, it is suggested that
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a selection should be made by comprehensively evaluating the importance of charting performance, diagnostic capability,
and computational complexity.

3.3. Discussion on control chart design and signal diagnosis

In the proposed pGLR and pMEWMAC charts, two sets of parameters need to be determined before using the charts: the
smoothing constants for the EWMA calculation, and the penalty coefficients for the penalized likelihood estimation. Similar
to any EWMA or MEWMA charts, the smoothing constant used for the EWMA calculation of the proposed charts has the
effect of smoothing the data series. Typically, a small value would lead to a better chart performance for detecting smaller
shifts, while a large value leads to a faster detection of larger shifts. In the conventional EWMA chart design, a small value,
usually around 0.1 or 0.2, is suggested. In implementing the proposed charts, similar smoothing constants are recommended.

The effect of the penalty coefficient on the actual sparse estimate thus obtained has beenwidely discussed in the statistics
literature. A larger penalty coefficient is expected to generatemore sparsity, and a smaller penalty coefficient corresponds to
less sparsity in the resulting mean vector and covariance matrix estimates. Yeh et al. (2012) studied the effect of the penalty
coefficient for monitoring the covariancematrix. The authors suggested that the best choice of the penalty coefficient varies
with shift magnitudes and shift patterns. The performance of the proposed pGLR and pMEWMAC charts is affected by many
factors, including the design parameters and the process itself. Therefore, if the shift patterns are known in advance, the
penalty coefficient should be chosen to optimize the chart’s performance against the potential shift patterns. In addition,
engineering knowledge could also be incorporated so that the designed charts could be more focused and perform as
expected.

Alternatively, Maboudou-Tchao and Agboto (2013) suggested applying the K -fold cross-validation to the in-control
sample,which is also a feasible choice for situations inwhichnotmuch information about process faults is known.Denote the
kth fold subsample by Fk, k = 1, . . . , K . One can calculate the penalized mean estimator µ

λ1
−k and the penalized covariance

matrix estimator Sλ1,λ2
−k accounting for the mean estimate µ

λ1
−k, both of which are estimated based on the in-control sample

excluding the kth subgroup. The K -fold cross validation score is then defined as

CV (λ1, λ2) =

K
k=1


nk log |Sλ1,λ2

−k | −


i∈Fk

(x(i)
− µ

λ1
−k)

′

Sλ1,λ2
−k

−1
(x(i)

− µ
λ1
−k)


,

where nk is the sample size of the kth subgroup Fk and x(i) is the ith observation in Fk. The λ1 and λ2 can be chosen to
maximize CV (λ1, λ2).

In this work, we suggest providing a collection of tuning parameters and let the chart select the best one adaptively.
In this way, the parameters are determined in a data-driven manner by the observations. In this paper, we designed the
candidate set to contain both small, moderate and large parameter values. Although the size of the candidate set is still
small, it already suggests quite competitive performance. With faster computing power, a larger candidate set could be
used, which is expected to result in better chart performance.

It is worth noting that one additional benefit of using the proposed chart is their capability in assisting in root cause
diagnosis. In practical SPC applications, an alarm is expected to be followed by a diagnostic procedure. The conventional GLR,
MEWMA or MEWMC charts do not provide direct information regarding which variables are more likely to be responsible
for the alarm. In Wang and Jiang (2009), the authors treated the non-zero coefficients obtained from a variable-selection
procedure as potential shift direction, anddesigned adirectionally-variant chart that improves the detecting power along the
identified shift direction. When an OC signal is triggered, these selected variables having non-zero coefficients are suspects
responsible for the signal. In this work, a similar procedure is followed. At step t, µ̂λt in Eq. (3) and Ŝλ

t in Eq. (5) are the last
estimates of processmean vector and covariancematrix. Therefore, if an OC alarm is triggered, the variables having non-zero
coefficients and elements in µ̂λt and Ŝλ

t should be considered responsible for the signal. Such information could benefit the
engineers for physical root cause identification and removal.

Zou et al. (2011) proposed a diagnostic framework using the penalizedmethod by suggesting a BIC type tuning parameter
selection scheme. Their method is based on the recently developed extended BIC scheme for tuning parameter selection in
the high dimensional penalized method (Chen and Chen, 2008). Such a method can be used for tuning parameter selection
in a Shewhart chart. As it requires a set of Phase II samples, it is not suitable for the EWMA on-line monitoring scenario
we mainly considered. However, it will be useful for diagnostics if an alarm is triggered in the monitoring process. As long
as an alarm is triggered, we can use the collected Phase II samples to estimate the mean vector and the covariance matrix,
possibly adding lasso type penalty to obtain sparse and more focused failure pattern. We can use the extended BIC criterion
suggested by Zou et al. (2011) to select the tuning parameter in this step.

3.4. Application to a real example

In studying the MEWMC chart, Hawkins and Maboudou-Tchao (2008) applied the MEWMAC chart, which combines
separateMEWMC andMEWMA charts, to a real data set collected from ambulatorymonitoring. Four physiological variables,
mean systolic blood pressure (SBP), mean diastolic blood pressure (DBP), mean heart rate (HR) and overall mean arterial
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(a) the GLR chart. (b) the pGLR chart.

Fig. 2. The applications of the GLR chart and the pGLR chart to the real example.

pressure (MAP), of 24 samples are measured (please refer to Hawkins and Maboudou-Tchao (2008) for a more detailed
description of the data set). The IC mean vector and covariance matrix of the process are given as follows:

µ0 = (126.61, 77.48, 80.95, 97.97)T

and

60 =

15.04 8.66 10.51 12.04
8.66 5.83 5.56 7.50
10.51 5.56 15.17 8.79
12.04 7.50 8.79 10.57

 .

In the following, for demonstration purpose, we apply the GLR chart and the proposed pGLR chart to the same data set
and compare their performance in detecting the process changes (the MEWMAC and pMEWMAC charts could be applied
in the same way). Both charts use α = ω = 0.2 in accumulating historical observations. The candidate set of tuning
parameters used in the this example is the same as that used in the simulation study. That is, λ1 = {0.05, 0.1, 0.3} and
λ2 = {0.1, 0.2, 0.4}, and 9 combinations in total are used. We first use simulation to obtain the control limits of both charts
so that the IC ARL is approximately 200, then monitor the 24 samples using the two charts.

The GLR chart and the pGLR chart are shown in Fig. 2. Both charts show a similar trendwhen the process evolves. For this
particular data set, the GLR chart triggered the first alarm at sample 19, while the pGLR chart first signaled at sample 20.

As mentioned earlier, the penalized estimates can help provide clues for process diagnosis. Therefore, we extract the
sparse estimates of process mean and covariance matrix at sample 20, which is when the first OC signal showed up on the
pGLR chart, and compare them with their in-control values. The sparse estimate of the mean difference is

µdiff = µ̂λ20 − µ0 = (0, 0, 0, −0.645)T ,

and the difference between the estimated covariance matrix and the IC covariance matrix is

6diff = Ŝλ
20 − 60 =

0 0 0 0
0 0.006 0 −0.139
0 0 0 0
0 −0.139 0 0.101

 .

The sparse estimates of the mean vector and the covariance matrix suggest two possible shift sources: the mean shift of
x4, and/or the variance/covariance changes of the variables having non-zero elements in 6diff. In explaining the OC signal,
Hawkins and Maboudou-Tchao (2008) analyzed the regression-adjusted variables and suggested that x3 (corrected for x1
and x2) became less variable, whereas x4 (corrected for x1, x2 and x3) became more variable. From 6diff, it can be seen that
an increase in the variance of x4 is observed. In addition, a decrease in the covariance between x1 and x3 is also detected.
The observations suggested by the pGLR chart are generally consistent with those observed in Hawkins and Maboudou-
Tchao (2008). Please note that Hawkins andMaboudou-Tchao (2008) paid special efforts after the signal to obtain diagnostic
information. The pGLR chart, on the other hand, can readily provide such information after variable selection, and is therefore
helpful to practitioners for further root cause diagnosis.

4. Conclusions

In amultivariate process, it is common thatwhen a process change occurs, only a small set of variables are affected,which
leads to sparse change patterns in themean vector or/and the covariancematrix. Taking such information into consideration,
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we develop, in this work, two control charts for simultaneously monitoring the mean vector and the covariance matrix in a
multivariate process in which only individual observations are available.

Through the simulation studies, we demonstrated that using the penalized estimates is helpful for removing the noises
in the observations and generating sparse estimates. When incorporating these sparse estimates into constructing the
proposed charts, the chart performance is further improved in most cases. In addition, the penalized versions of the GLR
chart and the MEWMAC chart, the pGLR chart and the pMEWMAC chart, respectively, can assist in identifying the shifted
variables or components, which are helpful for further root-cause diagnosis.

The current work only demonstrates the potential of incorporating the sparse estimates to improve the chart
performance. However, more research efforts are needed along this line. Unlike the conventional charts which have been
extensively studied in the literature, the robustness and the flexible design of the penalized chart, and its use in diverse SPC
applications, are all worthy of further investigations in the future.
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